3.8.30 \(\int \frac {1}{x^4 (a+b x^2) (c+d x^2)^{5/2}} \, dx\) [730]

Optimal. Leaf size=245 \[ -\frac {d}{3 c (b c-a d) x^3 \left (c+d x^2\right )^{3/2}}-\frac {d (3 b c-2 a d)}{c^2 (b c-a d)^2 x^3 \sqrt {c+d x^2}}-\frac {\left (b^2 c^2-12 a b c d+8 a^2 d^2\right ) \sqrt {c+d x^2}}{3 a c^3 (b c-a d)^2 x^3}+\frac {(b c-2 a d) \left (3 b^2 c^2+8 a b c d-8 a^2 d^2\right ) \sqrt {c+d x^2}}{3 a^2 c^4 (b c-a d)^2 x}+\frac {b^4 \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{a^{5/2} (b c-a d)^{5/2}} \]

[Out]

-1/3*d/c/(-a*d+b*c)/x^3/(d*x^2+c)^(3/2)+b^4*arctan(x*(-a*d+b*c)^(1/2)/a^(1/2)/(d*x^2+c)^(1/2))/a^(5/2)/(-a*d+b
*c)^(5/2)-d*(-2*a*d+3*b*c)/c^2/(-a*d+b*c)^2/x^3/(d*x^2+c)^(1/2)-1/3*(8*a^2*d^2-12*a*b*c*d+b^2*c^2)*(d*x^2+c)^(
1/2)/a/c^3/(-a*d+b*c)^2/x^3+1/3*(-2*a*d+b*c)*(-8*a^2*d^2+8*a*b*c*d+3*b^2*c^2)*(d*x^2+c)^(1/2)/a^2/c^4/(-a*d+b*
c)^2/x

________________________________________________________________________________________

Rubi [A]
time = 0.23, antiderivative size = 245, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {483, 593, 597, 12, 385, 211} \begin {gather*} \frac {b^4 \text {ArcTan}\left (\frac {x \sqrt {b c-a d}}{\sqrt {a} \sqrt {c+d x^2}}\right )}{a^{5/2} (b c-a d)^{5/2}}+\frac {\sqrt {c+d x^2} (b c-2 a d) \left (-8 a^2 d^2+8 a b c d+3 b^2 c^2\right )}{3 a^2 c^4 x (b c-a d)^2}-\frac {\sqrt {c+d x^2} \left (8 a^2 d^2-12 a b c d+b^2 c^2\right )}{3 a c^3 x^3 (b c-a d)^2}-\frac {d (3 b c-2 a d)}{c^2 x^3 \sqrt {c+d x^2} (b c-a d)^2}-\frac {d}{3 c x^3 \left (c+d x^2\right )^{3/2} (b c-a d)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^4*(a + b*x^2)*(c + d*x^2)^(5/2)),x]

[Out]

-1/3*d/(c*(b*c - a*d)*x^3*(c + d*x^2)^(3/2)) - (d*(3*b*c - 2*a*d))/(c^2*(b*c - a*d)^2*x^3*Sqrt[c + d*x^2]) - (
(b^2*c^2 - 12*a*b*c*d + 8*a^2*d^2)*Sqrt[c + d*x^2])/(3*a*c^3*(b*c - a*d)^2*x^3) + ((b*c - 2*a*d)*(3*b^2*c^2 +
8*a*b*c*d - 8*a^2*d^2)*Sqrt[c + d*x^2])/(3*a^2*c^4*(b*c - a*d)^2*x) + (b^4*ArcTan[(Sqrt[b*c - a*d]*x)/(Sqrt[a]
*Sqrt[c + d*x^2])])/(a^(5/2)*(b*c - a*d)^(5/2))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 483

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*(e*
x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*e*n*(b*c - a*d)*(p + 1))), x] + Dist[1/(a*n*(b*c - a*d)
*(p + 1)), Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*b*(m + 1) + n*(b*c - a*d)*(p + 1) + d*b*(m + n
*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ
[p, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 593

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_)), x
_Symbol] :> Simp[(-(b*e - a*f))*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*g*n*(b*c - a*d)*(p +
 1))), x] + Dist[1/(a*n*(b*c - a*d)*(p + 1)), Int[(g*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f)
*(m + 1) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c,
d, e, f, g, m, q}, x] && IGtQ[n, 0] && LtQ[p, -1]

Rule 597

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {1}{x^4 \left (a+b x^2\right ) \left (c+d x^2\right )^{5/2}} \, dx &=-\frac {d}{3 c (b c-a d) x^3 \left (c+d x^2\right )^{3/2}}+\frac {\int \frac {3 (b c-2 a d)-6 b d x^2}{x^4 \left (a+b x^2\right ) \left (c+d x^2\right )^{3/2}} \, dx}{3 c (b c-a d)}\\ &=-\frac {d}{3 c (b c-a d) x^3 \left (c+d x^2\right )^{3/2}}-\frac {d (3 b c-2 a d)}{c^2 (b c-a d)^2 x^3 \sqrt {c+d x^2}}+\frac {\int \frac {3 \left (b^2 c^2-12 a b c d+8 a^2 d^2\right )-12 b d (3 b c-2 a d) x^2}{x^4 \left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{3 c^2 (b c-a d)^2}\\ &=-\frac {d}{3 c (b c-a d) x^3 \left (c+d x^2\right )^{3/2}}-\frac {d (3 b c-2 a d)}{c^2 (b c-a d)^2 x^3 \sqrt {c+d x^2}}-\frac {\left (\frac {b^2 c}{a}-12 b d+\frac {8 a d^2}{c}\right ) \sqrt {c+d x^2}}{3 c^2 (b c-a d)^2 x^3}-\frac {\int \frac {3 (b c-2 a d) \left (3 b^2 c^2+8 a b c d-8 a^2 d^2\right )+6 b d \left (b^2 c^2-12 a b c d+8 a^2 d^2\right ) x^2}{x^2 \left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{9 a c^3 (b c-a d)^2}\\ &=-\frac {d}{3 c (b c-a d) x^3 \left (c+d x^2\right )^{3/2}}-\frac {d (3 b c-2 a d)}{c^2 (b c-a d)^2 x^3 \sqrt {c+d x^2}}-\frac {\left (\frac {b^2 c}{a}-12 b d+\frac {8 a d^2}{c}\right ) \sqrt {c+d x^2}}{3 c^2 (b c-a d)^2 x^3}+\frac {(b c-2 a d) \left (3 b^2 c^2+8 a b c d-8 a^2 d^2\right ) \sqrt {c+d x^2}}{3 a^2 c^4 (b c-a d)^2 x}+\frac {\int \frac {9 b^4 c^4}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{9 a^2 c^4 (b c-a d)^2}\\ &=-\frac {d}{3 c (b c-a d) x^3 \left (c+d x^2\right )^{3/2}}-\frac {d (3 b c-2 a d)}{c^2 (b c-a d)^2 x^3 \sqrt {c+d x^2}}-\frac {\left (\frac {b^2 c}{a}-12 b d+\frac {8 a d^2}{c}\right ) \sqrt {c+d x^2}}{3 c^2 (b c-a d)^2 x^3}+\frac {(b c-2 a d) \left (3 b^2 c^2+8 a b c d-8 a^2 d^2\right ) \sqrt {c+d x^2}}{3 a^2 c^4 (b c-a d)^2 x}+\frac {b^4 \int \frac {1}{\left (a+b x^2\right ) \sqrt {c+d x^2}} \, dx}{a^2 (b c-a d)^2}\\ &=-\frac {d}{3 c (b c-a d) x^3 \left (c+d x^2\right )^{3/2}}-\frac {d (3 b c-2 a d)}{c^2 (b c-a d)^2 x^3 \sqrt {c+d x^2}}-\frac {\left (\frac {b^2 c}{a}-12 b d+\frac {8 a d^2}{c}\right ) \sqrt {c+d x^2}}{3 c^2 (b c-a d)^2 x^3}+\frac {(b c-2 a d) \left (3 b^2 c^2+8 a b c d-8 a^2 d^2\right ) \sqrt {c+d x^2}}{3 a^2 c^4 (b c-a d)^2 x}+\frac {b^4 \text {Subst}\left (\int \frac {1}{a-(-b c+a d) x^2} \, dx,x,\frac {x}{\sqrt {c+d x^2}}\right )}{a^2 (b c-a d)^2}\\ &=-\frac {d}{3 c (b c-a d) x^3 \left (c+d x^2\right )^{3/2}}-\frac {d (3 b c-2 a d)}{c^2 (b c-a d)^2 x^3 \sqrt {c+d x^2}}-\frac {\left (\frac {b^2 c}{a}-12 b d+\frac {8 a d^2}{c}\right ) \sqrt {c+d x^2}}{3 c^2 (b c-a d)^2 x^3}+\frac {(b c-2 a d) \left (3 b^2 c^2+8 a b c d-8 a^2 d^2\right ) \sqrt {c+d x^2}}{3 a^2 c^4 (b c-a d)^2 x}+\frac {b^4 \tan ^{-1}\left (\frac {\sqrt {b c-a d} x}{\sqrt {a} \sqrt {c+d x^2}}\right )}{a^{5/2} (b c-a d)^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.80, size = 233, normalized size = 0.95 \begin {gather*} \frac {3 b^3 c^3 x^2 \left (c+d x^2\right )^2-a b^2 c^2 \left (c-2 d x^2\right ) \left (c+d x^2\right )^2+a^2 b c d \left (2 c^3-9 c^2 d x^2-36 c d^2 x^4-24 d^3 x^6\right )+a^3 d^2 \left (-c^3+6 c^2 d x^2+24 c d^2 x^4+16 d^3 x^6\right )}{3 a^2 c^4 (b c-a d)^2 x^3 \left (c+d x^2\right )^{3/2}}-\frac {b^4 \tan ^{-1}\left (\frac {a \sqrt {d}+b x \left (\sqrt {d} x-\sqrt {c+d x^2}\right )}{\sqrt {a} \sqrt {b c-a d}}\right )}{a^{5/2} (b c-a d)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*(a + b*x^2)*(c + d*x^2)^(5/2)),x]

[Out]

(3*b^3*c^3*x^2*(c + d*x^2)^2 - a*b^2*c^2*(c - 2*d*x^2)*(c + d*x^2)^2 + a^2*b*c*d*(2*c^3 - 9*c^2*d*x^2 - 36*c*d
^2*x^4 - 24*d^3*x^6) + a^3*d^2*(-c^3 + 6*c^2*d*x^2 + 24*c*d^2*x^4 + 16*d^3*x^6))/(3*a^2*c^4*(b*c - a*d)^2*x^3*
(c + d*x^2)^(3/2)) - (b^4*ArcTan[(a*Sqrt[d] + b*x*(Sqrt[d]*x - Sqrt[c + d*x^2]))/(Sqrt[a]*Sqrt[b*c - a*d])])/(
a^(5/2)*(b*c - a*d)^(5/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1551\) vs. \(2(221)=442\).
time = 0.18, size = 1552, normalized size = 6.33

method result size
risch \(-\frac {\sqrt {d \,x^{2}+c}\, \left (-8 a d \,x^{2}-3 c \,x^{2} b +a c \right )}{3 c^{4} a^{2} x^{3}}+\frac {5 a \,b^{2} d^{5} \sqrt {\left (x -\frac {\sqrt {-c d}}{d}\right )^{2} d +2 \sqrt {-c d}\, \left (x -\frac {\sqrt {-c d}}{d}\right )}}{4 c^{4} \left (b \sqrt {-c d}+\sqrt {-a b}\, d \right )^{2} \left (b \sqrt {-c d}-\sqrt {-a b}\, d \right )^{2} \left (x -\frac {\sqrt {-c d}}{d}\right )}-\frac {7 b^{3} d^{4} \sqrt {\left (x -\frac {\sqrt {-c d}}{d}\right )^{2} d +2 \sqrt {-c d}\, \left (x -\frac {\sqrt {-c d}}{d}\right )}}{4 c^{3} \left (b \sqrt {-c d}+\sqrt {-a b}\, d \right )^{2} \left (b \sqrt {-c d}-\sqrt {-a b}\, d \right )^{2} \left (x -\frac {\sqrt {-c d}}{d}\right )}-\frac {b \,d^{3} \sqrt {\left (x +\frac {\sqrt {-c d}}{d}\right )^{2} d -2 \sqrt {-c d}\, \left (x +\frac {\sqrt {-c d}}{d}\right )}}{12 c^{3} \left (b \sqrt {-c d}+\sqrt {-a b}\, d \right ) \left (b \sqrt {-c d}-\sqrt {-a b}\, d \right ) \sqrt {-c d}\, \left (x +\frac {\sqrt {-c d}}{d}\right )^{2}}+\frac {b \,d^{3} \sqrt {\left (x +\frac {\sqrt {-c d}}{d}\right )^{2} d -2 \sqrt {-c d}\, \left (x +\frac {\sqrt {-c d}}{d}\right )}}{12 c^{4} \left (b \sqrt {-c d}+\sqrt {-a b}\, d \right ) \left (b \sqrt {-c d}-\sqrt {-a b}\, d \right ) \left (x +\frac {\sqrt {-c d}}{d}\right )}+\frac {b \,d^{3} \sqrt {\left (x -\frac {\sqrt {-c d}}{d}\right )^{2} d +2 \sqrt {-c d}\, \left (x -\frac {\sqrt {-c d}}{d}\right )}}{12 c^{3} \left (b \sqrt {-c d}+\sqrt {-a b}\, d \right ) \left (b \sqrt {-c d}-\sqrt {-a b}\, d \right ) \sqrt {-c d}\, \left (x -\frac {\sqrt {-c d}}{d}\right )^{2}}+\frac {b \,d^{3} \sqrt {\left (x -\frac {\sqrt {-c d}}{d}\right )^{2} d +2 \sqrt {-c d}\, \left (x -\frac {\sqrt {-c d}}{d}\right )}}{12 c^{4} \left (b \sqrt {-c d}+\sqrt {-a b}\, d \right ) \left (b \sqrt {-c d}-\sqrt {-a b}\, d \right ) \left (x -\frac {\sqrt {-c d}}{d}\right )}-\frac {b^{6} d^{2} \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x -\frac {\sqrt {-a b}}{b}\right )^{2}+\frac {2 d \sqrt {-a b}\, \left (x -\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x -\frac {\sqrt {-a b}}{b}}\right )}{2 a^{2} \left (b \sqrt {-c d}+\sqrt {-a b}\, d \right )^{2} \left (b \sqrt {-c d}-\sqrt {-a b}\, d \right )^{2} \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}}+\frac {5 a \,b^{2} d^{5} \sqrt {\left (x +\frac {\sqrt {-c d}}{d}\right )^{2} d -2 \sqrt {-c d}\, \left (x +\frac {\sqrt {-c d}}{d}\right )}}{4 c^{4} \left (b \sqrt {-c d}+\sqrt {-a b}\, d \right )^{2} \left (b \sqrt {-c d}-\sqrt {-a b}\, d \right )^{2} \left (x +\frac {\sqrt {-c d}}{d}\right )}-\frac {7 b^{3} d^{4} \sqrt {\left (x +\frac {\sqrt {-c d}}{d}\right )^{2} d -2 \sqrt {-c d}\, \left (x +\frac {\sqrt {-c d}}{d}\right )}}{4 c^{3} \left (b \sqrt {-c d}+\sqrt {-a b}\, d \right )^{2} \left (b \sqrt {-c d}-\sqrt {-a b}\, d \right )^{2} \left (x +\frac {\sqrt {-c d}}{d}\right )}+\frac {b^{6} d^{2} \ln \left (\frac {-\frac {2 \left (a d -b c \right )}{b}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}+2 \sqrt {-\frac {a d -b c}{b}}\, \sqrt {d \left (x +\frac {\sqrt {-a b}}{b}\right )^{2}-\frac {2 d \sqrt {-a b}\, \left (x +\frac {\sqrt {-a b}}{b}\right )}{b}-\frac {a d -b c}{b}}}{x +\frac {\sqrt {-a b}}{b}}\right )}{2 a^{2} \left (b \sqrt {-c d}+\sqrt {-a b}\, d \right )^{2} \left (b \sqrt {-c d}-\sqrt {-a b}\, d \right )^{2} \sqrt {-a b}\, \sqrt {-\frac {a d -b c}{b}}}\) \(1282\)
default \(\text {Expression too large to display}\) \(1552\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(b*x^2+a)/(d*x^2+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/2*b^2/a^2/(-a*b)^(1/2)*(-1/3/(a*d-b*c)*b/(d*(x-1/b*(-a*b)^(1/2))^2+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(
a*d-b*c)/b)^(3/2)+d*(-a*b)^(1/2)/(a*d-b*c)*(2/3*(2*d*(x-1/b*(-a*b)^(1/2))+2*d*(-a*b)^(1/2)/b)/(-4*d*(a*d-b*c)/
b+4*d^2*a/b)/(d*(x-1/b*(-a*b)^(1/2))^2+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)+16/3*d/(-4*d
*(a*d-b*c)/b+4*d^2*a/b)^2*(2*d*(x-1/b*(-a*b)^(1/2))+2*d*(-a*b)^(1/2)/b)/(d*(x-1/b*(-a*b)^(1/2))^2+2*d*(-a*b)^(
1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))-1/(a*d-b*c)*b*(-1/(a*d-b*c)*b/(d*(x-1/b*(-a*b)^(1/2))^2+2*d*(-
a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)+2*d*(-a*b)^(1/2)/(a*d-b*c)*(2*d*(x-1/b*(-a*b)^(1/2))+2*d*
(-a*b)^(1/2)/b)/(-4*d*(a*d-b*c)/b+4*d^2*a/b)/(d*(x-1/b*(-a*b)^(1/2))^2+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))
-(a*d-b*c)/b)^(1/2)+1/(a*d-b*c)*b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/
2))+2*(-(a*d-b*c)/b)^(1/2)*(d*(x-1/b*(-a*b)^(1/2))^2+2*d*(-a*b)^(1/2)/b*(x-1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2
))/(x-1/b*(-a*b)^(1/2)))))-1/2*b^2/a^2/(-a*b)^(1/2)*(-1/3/(a*d-b*c)*b/(d*(x+1/b*(-a*b)^(1/2))^2-2*d*(-a*b)^(1/
2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(3/2)-d*(-a*b)^(1/2)/(a*d-b*c)*(2/3*(2*d*(x+1/b*(-a*b)^(1/2))-2*d*(-a*b
)^(1/2)/b)/(-4*d*(a*d-b*c)/b+4*d^2*a/b)/(d*(x+1/b*(-a*b)^(1/2))^2-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d
-b*c)/b)^(3/2)+16/3*d/(-4*d*(a*d-b*c)/b+4*d^2*a/b)^2*(2*d*(x+1/b*(-a*b)^(1/2))-2*d*(-a*b)^(1/2)/b)/(d*(x+1/b*(
-a*b)^(1/2))^2-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2))-1/(a*d-b*c)*b*(-1/(a*d-b*c)*b/(d*(x
+1/b*(-a*b)^(1/2))^2-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)-2*d*(-a*b)^(1/2)/(a*d-b*c)*(2*
d*(x+1/b*(-a*b)^(1/2))-2*d*(-a*b)^(1/2)/b)/(-4*d*(a*d-b*c)/b+4*d^2*a/b)/(d*(x+1/b*(-a*b)^(1/2))^2-2*d*(-a*b)^(
1/2)/b*(x+1/b*(-a*b)^(1/2))-(a*d-b*c)/b)^(1/2)+1/(a*d-b*c)*b/(-(a*d-b*c)/b)^(1/2)*ln((-2*(a*d-b*c)/b-2*d*(-a*b
)^(1/2)/b*(x+1/b*(-a*b)^(1/2))+2*(-(a*d-b*c)/b)^(1/2)*(d*(x+1/b*(-a*b)^(1/2))^2-2*d*(-a*b)^(1/2)/b*(x+1/b*(-a*
b)^(1/2))-(a*d-b*c)/b)^(1/2))/(x+1/b*(-a*b)^(1/2)))))+1/a*(-1/3/c/x^3/(d*x^2+c)^(3/2)-2*d/c*(-1/c/x/(d*x^2+c)^
(3/2)-4*d/c*(1/3*x/c/(d*x^2+c)^(3/2)+2/3*x/c^2/(d*x^2+c)^(1/2))))-b/a^2*(-1/c/x/(d*x^2+c)^(3/2)-4*d/c*(1/3*x/c
/(d*x^2+c)^(3/2)+2/3*x/c^2/(d*x^2+c)^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b*x^2+a)/(d*x^2+c)^(5/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + a)*(d*x^2 + c)^(5/2)*x^4), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 544 vs. \(2 (221) = 442\).
time = 1.90, size = 1128, normalized size = 4.60 \begin {gather*} \left [-\frac {3 \, {\left (b^{4} c^{4} d^{2} x^{7} + 2 \, b^{4} c^{5} d x^{5} + b^{4} c^{6} x^{3}\right )} \sqrt {-a b c + a^{2} d} \log \left (\frac {{\left (b^{2} c^{2} - 8 \, a b c d + 8 \, a^{2} d^{2}\right )} x^{4} + a^{2} c^{2} - 2 \, {\left (3 \, a b c^{2} - 4 \, a^{2} c d\right )} x^{2} - 4 \, {\left ({\left (b c - 2 \, a d\right )} x^{3} - a c x\right )} \sqrt {-a b c + a^{2} d} \sqrt {d x^{2} + c}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}\right ) + 4 \, {\left (a^{2} b^{3} c^{6} - 3 \, a^{3} b^{2} c^{5} d + 3 \, a^{4} b c^{4} d^{2} - a^{5} c^{3} d^{3} - {\left (3 \, a b^{4} c^{4} d^{2} - a^{2} b^{3} c^{3} d^{3} - 26 \, a^{3} b^{2} c^{2} d^{4} + 40 \, a^{4} b c d^{5} - 16 \, a^{5} d^{6}\right )} x^{6} - 3 \, {\left (2 \, a b^{4} c^{5} d - a^{2} b^{3} c^{4} d^{2} - 13 \, a^{3} b^{2} c^{3} d^{3} + 20 \, a^{4} b c^{2} d^{4} - 8 \, a^{5} c d^{5}\right )} x^{4} - 3 \, {\left (a b^{4} c^{6} - a^{2} b^{3} c^{5} d - 3 \, a^{3} b^{2} c^{4} d^{2} + 5 \, a^{4} b c^{3} d^{3} - 2 \, a^{5} c^{2} d^{4}\right )} x^{2}\right )} \sqrt {d x^{2} + c}}{12 \, {\left ({\left (a^{3} b^{3} c^{7} d^{2} - 3 \, a^{4} b^{2} c^{6} d^{3} + 3 \, a^{5} b c^{5} d^{4} - a^{6} c^{4} d^{5}\right )} x^{7} + 2 \, {\left (a^{3} b^{3} c^{8} d - 3 \, a^{4} b^{2} c^{7} d^{2} + 3 \, a^{5} b c^{6} d^{3} - a^{6} c^{5} d^{4}\right )} x^{5} + {\left (a^{3} b^{3} c^{9} - 3 \, a^{4} b^{2} c^{8} d + 3 \, a^{5} b c^{7} d^{2} - a^{6} c^{6} d^{3}\right )} x^{3}\right )}}, \frac {3 \, {\left (b^{4} c^{4} d^{2} x^{7} + 2 \, b^{4} c^{5} d x^{5} + b^{4} c^{6} x^{3}\right )} \sqrt {a b c - a^{2} d} \arctan \left (\frac {\sqrt {a b c - a^{2} d} {\left ({\left (b c - 2 \, a d\right )} x^{2} - a c\right )} \sqrt {d x^{2} + c}}{2 \, {\left ({\left (a b c d - a^{2} d^{2}\right )} x^{3} + {\left (a b c^{2} - a^{2} c d\right )} x\right )}}\right ) - 2 \, {\left (a^{2} b^{3} c^{6} - 3 \, a^{3} b^{2} c^{5} d + 3 \, a^{4} b c^{4} d^{2} - a^{5} c^{3} d^{3} - {\left (3 \, a b^{4} c^{4} d^{2} - a^{2} b^{3} c^{3} d^{3} - 26 \, a^{3} b^{2} c^{2} d^{4} + 40 \, a^{4} b c d^{5} - 16 \, a^{5} d^{6}\right )} x^{6} - 3 \, {\left (2 \, a b^{4} c^{5} d - a^{2} b^{3} c^{4} d^{2} - 13 \, a^{3} b^{2} c^{3} d^{3} + 20 \, a^{4} b c^{2} d^{4} - 8 \, a^{5} c d^{5}\right )} x^{4} - 3 \, {\left (a b^{4} c^{6} - a^{2} b^{3} c^{5} d - 3 \, a^{3} b^{2} c^{4} d^{2} + 5 \, a^{4} b c^{3} d^{3} - 2 \, a^{5} c^{2} d^{4}\right )} x^{2}\right )} \sqrt {d x^{2} + c}}{6 \, {\left ({\left (a^{3} b^{3} c^{7} d^{2} - 3 \, a^{4} b^{2} c^{6} d^{3} + 3 \, a^{5} b c^{5} d^{4} - a^{6} c^{4} d^{5}\right )} x^{7} + 2 \, {\left (a^{3} b^{3} c^{8} d - 3 \, a^{4} b^{2} c^{7} d^{2} + 3 \, a^{5} b c^{6} d^{3} - a^{6} c^{5} d^{4}\right )} x^{5} + {\left (a^{3} b^{3} c^{9} - 3 \, a^{4} b^{2} c^{8} d + 3 \, a^{5} b c^{7} d^{2} - a^{6} c^{6} d^{3}\right )} x^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b*x^2+a)/(d*x^2+c)^(5/2),x, algorithm="fricas")

[Out]

[-1/12*(3*(b^4*c^4*d^2*x^7 + 2*b^4*c^5*d*x^5 + b^4*c^6*x^3)*sqrt(-a*b*c + a^2*d)*log(((b^2*c^2 - 8*a*b*c*d + 8
*a^2*d^2)*x^4 + a^2*c^2 - 2*(3*a*b*c^2 - 4*a^2*c*d)*x^2 - 4*((b*c - 2*a*d)*x^3 - a*c*x)*sqrt(-a*b*c + a^2*d)*s
qrt(d*x^2 + c))/(b^2*x^4 + 2*a*b*x^2 + a^2)) + 4*(a^2*b^3*c^6 - 3*a^3*b^2*c^5*d + 3*a^4*b*c^4*d^2 - a^5*c^3*d^
3 - (3*a*b^4*c^4*d^2 - a^2*b^3*c^3*d^3 - 26*a^3*b^2*c^2*d^4 + 40*a^4*b*c*d^5 - 16*a^5*d^6)*x^6 - 3*(2*a*b^4*c^
5*d - a^2*b^3*c^4*d^2 - 13*a^3*b^2*c^3*d^3 + 20*a^4*b*c^2*d^4 - 8*a^5*c*d^5)*x^4 - 3*(a*b^4*c^6 - a^2*b^3*c^5*
d - 3*a^3*b^2*c^4*d^2 + 5*a^4*b*c^3*d^3 - 2*a^5*c^2*d^4)*x^2)*sqrt(d*x^2 + c))/((a^3*b^3*c^7*d^2 - 3*a^4*b^2*c
^6*d^3 + 3*a^5*b*c^5*d^4 - a^6*c^4*d^5)*x^7 + 2*(a^3*b^3*c^8*d - 3*a^4*b^2*c^7*d^2 + 3*a^5*b*c^6*d^3 - a^6*c^5
*d^4)*x^5 + (a^3*b^3*c^9 - 3*a^4*b^2*c^8*d + 3*a^5*b*c^7*d^2 - a^6*c^6*d^3)*x^3), 1/6*(3*(b^4*c^4*d^2*x^7 + 2*
b^4*c^5*d*x^5 + b^4*c^6*x^3)*sqrt(a*b*c - a^2*d)*arctan(1/2*sqrt(a*b*c - a^2*d)*((b*c - 2*a*d)*x^2 - a*c)*sqrt
(d*x^2 + c)/((a*b*c*d - a^2*d^2)*x^3 + (a*b*c^2 - a^2*c*d)*x)) - 2*(a^2*b^3*c^6 - 3*a^3*b^2*c^5*d + 3*a^4*b*c^
4*d^2 - a^5*c^3*d^3 - (3*a*b^4*c^4*d^2 - a^2*b^3*c^3*d^3 - 26*a^3*b^2*c^2*d^4 + 40*a^4*b*c*d^5 - 16*a^5*d^6)*x
^6 - 3*(2*a*b^4*c^5*d - a^2*b^3*c^4*d^2 - 13*a^3*b^2*c^3*d^3 + 20*a^4*b*c^2*d^4 - 8*a^5*c*d^5)*x^4 - 3*(a*b^4*
c^6 - a^2*b^3*c^5*d - 3*a^3*b^2*c^4*d^2 + 5*a^4*b*c^3*d^3 - 2*a^5*c^2*d^4)*x^2)*sqrt(d*x^2 + c))/((a^3*b^3*c^7
*d^2 - 3*a^4*b^2*c^6*d^3 + 3*a^5*b*c^5*d^4 - a^6*c^4*d^5)*x^7 + 2*(a^3*b^3*c^8*d - 3*a^4*b^2*c^7*d^2 + 3*a^5*b
*c^6*d^3 - a^6*c^5*d^4)*x^5 + (a^3*b^3*c^9 - 3*a^4*b^2*c^8*d + 3*a^5*b*c^7*d^2 - a^6*c^6*d^3)*x^3)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{4} \left (a + b x^{2}\right ) \left (c + d x^{2}\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(b*x**2+a)/(d*x**2+c)**(5/2),x)

[Out]

Integral(1/(x**4*(a + b*x**2)*(c + d*x**2)**(5/2)), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 490 vs. \(2 (221) = 442\).
time = 1.30, size = 490, normalized size = 2.00 \begin {gather*} -\frac {b^{4} \sqrt {d} \arctan \left (\frac {{\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} b - b c + 2 \, a d}{2 \, \sqrt {a b c d - a^{2} d^{2}}}\right )}{{\left (a^{2} b^{2} c^{2} - 2 \, a^{3} b c d + a^{4} d^{2}\right )} \sqrt {a b c d - a^{2} d^{2}}} - \frac {{\left (\frac {{\left (11 \, b^{3} c^{6} d^{5} - 30 \, a b^{2} c^{5} d^{6} + 27 \, a^{2} b c^{4} d^{7} - 8 \, a^{3} c^{3} d^{8}\right )} x^{2}}{b^{4} c^{11} d - 4 \, a b^{3} c^{10} d^{2} + 6 \, a^{2} b^{2} c^{9} d^{3} - 4 \, a^{3} b c^{8} d^{4} + a^{4} c^{7} d^{5}} + \frac {3 \, {\left (4 \, b^{3} c^{7} d^{4} - 11 \, a b^{2} c^{6} d^{5} + 10 \, a^{2} b c^{5} d^{6} - 3 \, a^{3} c^{4} d^{7}\right )}}{b^{4} c^{11} d - 4 \, a b^{3} c^{10} d^{2} + 6 \, a^{2} b^{2} c^{9} d^{3} - 4 \, a^{3} b c^{8} d^{4} + a^{4} c^{7} d^{5}}\right )} x}{3 \, {\left (d x^{2} + c\right )}^{\frac {3}{2}}} - \frac {2 \, {\left (3 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{4} b c \sqrt {d} + 6 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{4} a d^{\frac {3}{2}} - 6 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} b c^{2} \sqrt {d} - 18 \, {\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} a c d^{\frac {3}{2}} + 3 \, b c^{3} \sqrt {d} + 8 \, a c^{2} d^{\frac {3}{2}}\right )}}{3 \, {\left ({\left (\sqrt {d} x - \sqrt {d x^{2} + c}\right )}^{2} - c\right )}^{3} a^{2} c^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(b*x^2+a)/(d*x^2+c)^(5/2),x, algorithm="giac")

[Out]

-b^4*sqrt(d)*arctan(1/2*((sqrt(d)*x - sqrt(d*x^2 + c))^2*b - b*c + 2*a*d)/sqrt(a*b*c*d - a^2*d^2))/((a^2*b^2*c
^2 - 2*a^3*b*c*d + a^4*d^2)*sqrt(a*b*c*d - a^2*d^2)) - 1/3*((11*b^3*c^6*d^5 - 30*a*b^2*c^5*d^6 + 27*a^2*b*c^4*
d^7 - 8*a^3*c^3*d^8)*x^2/(b^4*c^11*d - 4*a*b^3*c^10*d^2 + 6*a^2*b^2*c^9*d^3 - 4*a^3*b*c^8*d^4 + a^4*c^7*d^5) +
 3*(4*b^3*c^7*d^4 - 11*a*b^2*c^6*d^5 + 10*a^2*b*c^5*d^6 - 3*a^3*c^4*d^7)/(b^4*c^11*d - 4*a*b^3*c^10*d^2 + 6*a^
2*b^2*c^9*d^3 - 4*a^3*b*c^8*d^4 + a^4*c^7*d^5))*x/(d*x^2 + c)^(3/2) - 2/3*(3*(sqrt(d)*x - sqrt(d*x^2 + c))^4*b
*c*sqrt(d) + 6*(sqrt(d)*x - sqrt(d*x^2 + c))^4*a*d^(3/2) - 6*(sqrt(d)*x - sqrt(d*x^2 + c))^2*b*c^2*sqrt(d) - 1
8*(sqrt(d)*x - sqrt(d*x^2 + c))^2*a*c*d^(3/2) + 3*b*c^3*sqrt(d) + 8*a*c^2*d^(3/2))/(((sqrt(d)*x - sqrt(d*x^2 +
 c))^2 - c)^3*a^2*c^3)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x^4\,\left (b\,x^2+a\right )\,{\left (d\,x^2+c\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^4*(a + b*x^2)*(c + d*x^2)^(5/2)),x)

[Out]

int(1/(x^4*(a + b*x^2)*(c + d*x^2)^(5/2)), x)

________________________________________________________________________________________